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1. Introduction 

Digital transformation is a global phenomenon that enhances productivity, disrupts 
traditional business models, and fosters a wide range of innovations with significant 
implications for humanity's future (UNIDO, 2024). Driven mainly by data-based 
systems (DS), the transformation of socioeconomic, political, and market activity 
holds tremendous potential to advance sustainability, alas the current global trajectory 
often perpetuates the use of frontier technologies to exacerbate unsustainable 
practices that harm natural ecosystems, worsen multidimensional inequality, and 
threaten human well-being (CODES, 2022, UNCTAD, 2024a). 

Since their prolific explosion in 2022, the ubiquity and exponential expansion of 
generative artificial intelligence AI (Gen-AI) platforms has become a global 
phenomenon (Harlin et al., 2023). While Gen-AI models such as Open AI's Generative 
Pre-trained Transformer (GPT) models and other related foundation models (FM) 
present opportunities for innovation across industries, there is a growing realization 
that not every Gen-AI application will be inherently beneficial or realize its anticipated 
advantages (Bender et al. 2021). Beyond existential risks that could exacerbate 
longstanding ethical and socioeconomic issues, such as surveillance, privacy 
violations, multidimensional inequality, and discrimination, to name a few — DS such 
as Gen-AI also pose significant risks associated with global environmental 
sustainability concerns (Bashir et al. 2024; Ahmed & Kirchlager, 2024; Kalantzakos 
2020).   

Companies are incentivized to prioritize AI performance, efficiency, and scalability, 
often overlooking the environmental costs of Gen-AI innovations, at scale, while 
negating social and environmental impacts (Domínguez Hernández et al,. 2024; 
Varoquaux et al,.2024). At present, efforts to enhance computing sustainability are 
primarily centred on improving efficiency — such as boosting hardware energy 
efficiency, optimizing AI algorithms, and increasing the carbon efficiency of computing 
workloads through techniques like spatiotemporal workload shifting (Bashir et al., 
2024). 
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However, the narrow focus on efficiency and scalability, driven by relentless demand 
fails to address the broader environmental challenges tied to Gen-AI (Bashir t al., 
2024). To mitigate the existential risks associated with Gen-AI, concerted interventions 
to improve integrated thematic and topic modelling analysis (Raman, et al,.2024), 
robust global AI governance (Ahmed and Kirschlager, 2024) and ensure the 
widespread use of digital public goods (DPGs)1, amongst other factors. 

The Policy Network on AI (PNAI) is dedicated to integrating environmental 
considerations into the responsible global governance of Gen-AI, that aligns with best 
practices to support the global Majority (PNAI, 2023; WEF, 2024). PNAI’s commitment 
aligns with ongoing broader sustainability goals, including the United Nations 
Sustainable Development Goals (SDGs), which encompass objectives broadly related 
to adaptation, mitigation, and loss and damage, including biodiversity loss, wildlife 
conservation, and the sustainable use of natural resources. By raising awareness of 
the governance dimensions needed to support sustainable practices throughout the 
Gen-AI value chain, PNAI aims to understand the environmental impact associated 
with the development, deployment, and disposal of Gen-AI technologies and prioritizes 
policy action for climate justice while simultaneously minimizing the overall negative 
environmental impact of Gen-AI. 

Assessing and mitigating the environmental impact of Gen-AI technologies is 
particularly important for the global Majority, who may disproportionately bear the 
consequences of climate change linked to unsustainable digital economy practices 
(UNCTAD, 2024a). Communities in low-income and middle-income countries (LMICs)2 
often bear the brunt of environmental degradation and the extraction of labour and 
natural resources that are associated with technological transitions (UNCTAD, 2021). 
To achieve planetary health and human wellbeing, a shift in perspective and holistic 
approach to addressing grand challenges is needed, which requires analysis beyond 
the triple planetary crisis, to include other dimensions such as institutionalised 
inequality, decolonialisation, shifts in social and demographic dynamics, 
advancements in frontier technologies (FT), geopolitical tensions, governance issues, 
trust in multilateral social and institutional frameworks, as well as migration and 
conflict, among other factors (Ahmed and Kirschlager, 2024;UNDP, 2024).   

Communities who have been and continue to be marginalised need to be empowered 
to move beyond narratives as mere ‘victims’ and should be considered as holders of 
valuable and legitimate knowledge in times of Gen-AI and triple planetary crisis to 
ensure that the potential benefits of AI are not realized at the cost of LMIC’s ecological 

 
1 Digital public goods refer to open-source software, open AI models, open standards, open content, and open data 
that adhere to privacy and other applicable international and domestic laws, standards, best practices, and do no 
harm. The concept of DPGs stems from the economic term “public good” referring to resources and services 
individuals cannot (or should not) be excluded from. https://digitalpublicgoods.net/PublicGoodDataReport.pdf 
2 Designations such as “global Majority”, “low-income and middle-income countries”, “high-income countries” or 
“developing” are intended for statistical convenience and do not necessarily express a judgement about the stage 
reached by a particular country or area in the economic development process 
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ecosystems, livelihoods, and natural resources (Lehuedé 2024) and perpetuate 
historical and ongoing patterns of inequity (Elia 2023; Guerrero 2023), where wealthier 
nations and their corporations may benefit from the efficiencies generated by Gen-AI, 
while poorer regions bear the environmental costs without reaping similar rewards 
(UNCTAD, 2024a). 

Decisions regarding the deployment and regulation of Gen-AI technologies are often 
made by high-income countries and large corporations, sidelining voices from 
marginalized communities that are most affected by these choices (WEF, 2024). This 
lack of representation in climate governance frameworks further entrenches 
inequalities and diminishes the ability of these communities to advocate for their 
needs (Ren & Wierman, 2023). 

While the field of sustainable AI has developed and has been put forward as a way of 
addressing the environmental justice issues associated with AI throughout its lifecycle 
(Luccioni et al., 2024; Robbins and van Wynsberghe 2022; Strubell, et.al.,2020), there 
is limited literature focused on the Gen-AI value chain or a value chain assessment 
(VCA) of the environmental toll of Gen-AI. 

This discussion paper was created to facilitate much needed multistakeholder 
dialogue, providing insights into the opportunities and environmental externalities 
underpinning the infrastructure and the value chain of Gen-AI. The aim is to highlight 
the importance of sustainable practices through showcasing case studies. The 
development of this discussion paper is based on insights from multidisciplinary 
stakeholders from diverse regions, ensuring a holistic perspective on environmental 
sustainability and the Gen-AI value chain3. 

2. Environmental Sustainability and the Generative AI Value Chain 

2.1. State of Global Gen-AI Governance 

The current global governance of AI in general, faces several critical issues that reflect 
the complexities and rapid advancements of the technology such as, structural 
limitations, global imbalances and navigating a complex geopolitical landscape 
characterized by rapid technological advancements, cross-border impacts, ethical 
considerations, and the need for balance between innovation and regulation (Ahmed 
et al., 2023; WEF, 2024).  

Furthermore, current practices of safety and risk mitigation for governing AI often 
focus narrowly on improving energy efficiency without adequately addressing the 
broader sustainability and sociotechnical challenges, leading to an incomplete 

 
3 See Annex 1 for motivation for a Gen-AI value chain analysis vs life cycle assessment  
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understanding of the environmental costs associated with Gen-AI development and 
deployment (Domínguez Hernández et al. 2024).  The development of larger and more 
complex models is often prioritized for competitive reasons, without fully accounting 
for the carbon cost of training and deploying these models at scale (Bashir et al. 2024; 
Varoquaux et al,.2024). As investment in the development and application of Gen-AI 
technologies continues to grow, it becomes increasingly crucial to understand their 
impact on the environment. 

Furthermore, discussions regarding the balance between the potential benefits of Gen-
AI systems and their environmental costs must be based on concrete data and 
evidence (Bashir, et al.,2024). Unfortunately, most developers and operators of these 
systems are not currently providing the necessary data. The lack of publicly available 
information hinders the formulation and implementation of effective evidence-based 
policies (PNAI, 2023). 

In addition, as models optimise datasets and computational power to produce outputs 
that lack richness and variety, the solutions created may be inadequate for the global 
Majority. Analysing the Gen-AI value chain emphasises that innovation must emerge 
from a robust local digital ecosystem, where businesses, entrepreneurs, and academic 
institutions play a pivotal role. Multistakeholder collaboration will be crucial in co-
creating coordinated agile and adaptive governance that facilitate the creation of 
green digital jobs and sustainable livelihoods that support both economic growth and 
environmental resilience (Bashir et al., 2024). 

2.2. Exploring the Generative AI Value Chain 

The Gen-AI value chain outlines the various stages and components that comprise in 
the development, deployment, and utilization of Gen-AI technologies (Harlin, et al., 
2023).  

The Gen-AI value chain involves hardware in the form of devices and sensors to 
capture the data and data centres to store them, cloud platforms and networks for 
communicating data, foundation models, model hubs that act as repositories for 
storing and accessing foundation models, applications such as end-user interfaces, 
and existing AI service providers and new niche players that specialize in Gen-AI 
applications (Harlin et al.,2023).   

The Gen-AI value chain reflects a complex ecosystem that supports the creation and 
deployment of innovative AI solutions. As Gen-AI continues to evolve, understanding 
the value chain is essential for identifying investment opportunities, anticipatory 
governance, and assessing the potential impact of these technologies to enhance 
environmental stewardship. 

As shown in Figure 1, the Gen-AI value chain consists of several non-linear and 
dynamic key elements that contribute to the overall functionality and effectiveness of 
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Gen-AI systems, including natural resources and energy to build and transport the 
devices and products, which emit greenhouse gases throughout the value chain 
(Bashir et al. 2024).  

 

Figure 1: The Generative AI Value Chain 

 

Source: Harlin et al.,2023 
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2.3. Key Differences Between Gen-AI and Traditional AI Applications 

Gen-AI and traditional (weak or narrow) AI applications differ primarily in their goals 
and methods of operation, traditional AI typically focuses on recognizing patterns, 
making predictions, or automating tasks based on pre-existing data (Bond-Taylor et 
al., 2022).  

While traditional AI applications emphasize accuracy and efficiency in task 
completion, Gen-AI prioritizes creativity and the ability to produce novel outputs that 
didn't exist before. For instance, chatbots powered by traditional AI may provide 
factual responses, while those using generative AI can engage in more human-like, 
creative conversations (WEF, 2024). Gen-AI represents a paradigm shift by enabling 
the autonomous creation of novel content and adapting to complex scenarios. 
However, both traditional AI and Gen-AI are complementary, with traditional AI 
methods still holding immense value for many applications (Harlin et al.,2023). 

The differences between Gen-AI and traditional AI applications require distinct 
governance approaches because of the inherent risks and implications each type of 
AI presents (Bender et al. 2021; Brundage et al. 2020).  

However, a coordinated, collaborative, and inclusive approach is vital to create 
meaningful and effective governance structures that reflect the needs of the global 
Majority and address the complexities of Gen-AI's negative environmental 
implications. As the demand for AI continues to rise, these environmental costs will 
only escalate, underscoring the urgent need to address the sustainability challenges 
associated with the Gen-AI value chain. 

2.4. The Gen-AI Value Chain and the Environment 

2.4.1. Mapping the Environmental toll of the Gen-AI Value Chain 

Each stage of this value chain contributes to the overall carbon footprint and resource 
depletion. The following summaries the environment toll at each stage of the 
suggested Gen-AI value chain model: 

i. Computer Hardware 

Computer hardware provides the foundational layer which includes semiconductors, 
and specialized processors, such as Graphics Processing Units (GPUs) and Tensor 
Processing Units (TPUs) that provide the necessary computational power to handle 
the extensive data processing and complex algorithms required by Gen-AI models 
(Harlin et al.,2023). The production of computer hardware involves substantial energy 
consumption, contributing to carbon emissions. For instance, manufacturing a single 
high-performance GPU can emit over 200 kg of CO2, highlighting the energy-intensive 
nature of the process (Bashir et al. 2024). 
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While Gen-AI dominates global technological discussions, it cannot be viewed in 
isolation, as the raw materials and components driving its progress are controlled by 
a few, globally dispersed chip manufacturers. The dependency on these 
semiconductor companies underscores the interconnectedness of AI with the broader 
technological and supply chain ecosystem (Burkacky et al., 2024). Many governments 
have designated semiconductors as 'critical technologies,' due their foundational role 
at the base of the technology stack makes them essential to the advancement of 
nearly every emerging technology, since semiconductors enable the processing of 
large amounts of data and the rapid execution of complex calculations that form the 
foundation of AI systems, including Gen-AI (Janjeva et al.,2024).  

Left unchecked, the semiconductor boom could exacerbate huge levels of toxic waste 
in the form of air pollutants and groundwater contamination, due to certain chemicals 
and gases used in semiconductor manufacturing (Perkins 2024). As far back as the 
1980s, the use of chemicals in semiconductor operations has long been a challenge, 
the updated F-gas regulation and the proposed ban on per- and polyfluoroalkyl 
substances (PFAS) reflects growing regulatory efforts to mitigate the environmental 
impacts associated with semiconductor production (Hess, 2024). 

However, the increased integration of Gen-AI systems into various sectors creates new 
complexities and risks that require coordinated international efforts to ensure their 
safe and responsible use (WEF, 2024). In the context of growing concerns over climate 
change and biodiversity loss, addressing the environmental footprint of AI 
technologies is crucial. As Gen-AI applications evolve and proliferate, it becomes 
essential to address their ecological footprint to ensure sustainable digital 
development and a just green digital twin transition (Bashir et al.,2024). 

In addition, the computational power to train Gen-AI models requires significant energy 
that contributes to the overall carbon footprint of AI technologies and water use (Ren 
and Wierman, 2023). There are projections that the current computationally intensive 
training process for models Gen-AI like GPT-3 and the demand for high-performance 
semiconductor components, including logic chips (CPUs, GPUs, AI accelerators), 
memory chips (HBM, DDR), and data storage chips (NAND) will skyrocket to 
unprecedented levels by 2030 contributing to a significant carbon footprint, which 
poses challenges in achieving net-zero greenhouse gas emissions and accelerates 
depletion of natural resources (Bashir et al.,2024; Burkacky,et al.2024).  

The data centres housing the hardware necessary for training and running Gen-AI 
models require significant cooling to maintain optimal operating temperatures. This 
cooling process often involves substantial water usage and consume large amounts 
of electricity, with estimates indicating that data centres account for approximately 20 
percent of electricity consumption in some regions and raising concerns about water 
scarcity in regions where these data centres are located (Bashir et al. 2024; Ren, 2023). 
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As the world transitions to low-carbon technologies, such as electric vehicles and 
renewable energy systems, the demand for critical minerals like lithium, cobalt, and 
nickel is surging (Kalantzakos, 2020).  These minerals are essential for batteries and 
other components of so-called green technologies, leading to intensified mining 
activities. The rising demand for low-carbon technologies escalates the need for 
critical minerals, as the production of computer hardware involves the extraction of 
various natural resources, including silicon and rare earth metals (EPA, 2012). The 
processing of raw rare earth minerals can lead to environmental degradation, habitat 
destruction, and increased carbon emissions associated with mining and 
manufacturing, mainly for the global Majority, where there are higher geographic 
concentration of reserves and processing for five critical minerals: cobalt, copper, 
lithium, nickel, and rare earth elements (UNCTAD, 2024b). 

The environmental costs associated with extracting resources for AI infrastructure are 
significant and multifaceted (UNCTAD, 2024b). Additionally, the rapid obsolescence of 
hardware technology leads to the discarding of outdated equipment, contributing to 
the growing problem of electronic waste (e-waste). The Global E-waste Monitor 2024 
report indicates that e-waste generation in 2022 reached a record 62 million metric 
tonnes, with only 22 percent being officially collected and recycled, the annual 
generation of e-waste is rising by 2.6 million tonnes annually, on track to reach 82 
million tonnes by 2030 (UNITAR, 2024). Sustainable disposal and recycling practices 
are essential to mitigate the environmental impact of outdated equipment. 

ii. Cloud Platforms 

Gen-AI is revolutionizing industries by empowering machines to produce content, 
tackle complex challenges, and fuel innovations once thought impossible, from 
generating human-like text to creating realistic images, the capabilities of generative 
AI are vast and transformative (Intel, 2024).  

Gen-AI requires substantial computational power to process and generate data, 
reliable cloud environments offer the scalability needed to handle these demands 
(Harlin et al.,2023). Cloud platforms facilitate flexibility so that resources can be scaled 
up or down based on the workload, ensuring that Gen-AI models run efficiently without 
hardware limitations. This is particularly beneficial for training large models, which 
may require varying levels of resources at different stages of the value chain (Harlin et 
al.,2023). 

Major cloud service providers, such as Amazon (AWS), Microsoft Azure, and Google 
Cloud, are increasingly offering scalable infrastructure that enables the deployment of 
Gen-AI applications and models, facilitating access to vast computational resources 
and new database capabilities for storing and rapidly retrieving the unstructured and 
semi-structured data used in Gen-AI systems (Accenture, 2023).  
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However, cloud platforms that host Gen-AI applications consume substantial energy 
for both processing and cooling, data centres must maintain optimal temperatures to 
ensure efficient operation, leading to increased electricity and water usage (Bashir et 
al. 2024) and the ongoing maintenance of cloud infrastructure, including hardware 
upgrades and system monitoring, can contribute to resource depletion and 
environmental impact. A 2019 study estimated that training a large natural language 
model like GPT-3 on cloud platforms could result in carbon emissions equivalent to 
the lifetime emissions of five cars (Strubell, et.al.,2019). While there are efforts to stem 
the ecological externalities from increased energy use, there remains a lot more to do 
given the world’s increasing need for computing power (Bashir et al. 2024).  

The operational costs associated with running Gen-AI systems—particularly regarding 
cloud computing and energy consumption—are significant. Smaller organizations or 
those in developing regions may not have the financial capacity to sustain such 
expenses. This economic barrier leads to increased reliance on established providers 
who can absorb these costs, thereby limiting the ability of local entities to pursue 
independent innovation (Lynn et al., 2023). 

iii. Foundation Models 

Gen-AI models rely on extensive datasets to learn patterns and generate realistic 
outputs. For instance, during the training phase, Gen-AI models absorb petabytes of 
data—from diverse sources like books, websites, and other machine-readable digital 
content. The quality and diversity of the training data directly impact the performance 
of the AI (Wu & Higgins, 2023) 

Foundation Models (FM) are large pre-trained models, such as BERT, OpenAI's GPT-4, 
and DALL-E, which serve as the core building blocks for various Gen-AI applications, 
(also called large language models or LLMs) and are meant for general use (Harlin et 
al.,2023). 

FMs require extensive computational power and training periods, once FM are trained, 
they require continuous energy for inference and processing tasks, the ongoing energy 
demand can significantly add to the carbon footprint of AI applications, particularly as 
their usage scales (Patterson et al. 2021). Once AI models are deployed, they require 
ongoing operational energy for inference and processing tasks. The exact 
environmental cost of Gen-AI activity is not known, since the developers of the latest 
models do not provide detailed emissions figures. A thorough assessment of the 
environmental costs involved in maintaining Gen-AI technologies is urgently required 
(Bashir et al. 2024).  

While there are  efforts being made towards enhance algorithm efficiency and reduce 
computational requirements to meet the growing demand for Gen-AI applications such 
as the development of more innovative efficient transformer models, which aim to 
decrease the number of operations and memory demand needed during training 
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(Burkacky, et al., 2024) and mitigate hallucinations (IBM, 2023), there is not enough 
global governance considerations on the categories of risks and harms related to 
environmental  sustainability and natural resource management externalities 
associated with the most urgent negative impacts of FM and their downstream 
applications (Domínguez Hernández et al., 2024). 

Effective governance of Gen-AI requires robust data governance frameworks to ensure 
interoperability, transparency, and accountability. However, the lack of clear guidelines 
on data usage, unequal access to high quality datasets, and the potential for misuse 
complicate the establishment of reliable indicators for sustainability (PNAI, 2023). 

iv. Model Hubs and Machine Learning Operations 

Model hubs act as repositories for storing and accessing FMs, and machine learning 
operations (MLOps) encompass the tools and practices used for managing and 
deploying FM in real-world applications this stage is crucial for ensuring that models 
are effectively integrated into user-facing applications (Harlin et al.,2023). 

 Beyond the products themselves, energy consumption for storing, managing, and 
deploying models is also required for model hubs and MLOps. For example, regular 
updates and versioning of models can lead to increased resource consumption and 
waste generation, necessitating sustainable practices in the lifecycle management of 
AI models (Patterson et al., 2021). 

The reliance on substantial computational resources for MLOps not only contributes 
to higher energy consumption but also raises concerns about the environmental 
impact of these technologies. The operational emissions linked to running Gen-AI 
systems can exacerbate climate change, necessitating thorough assessments of their 
environmental costs. Moreover, as model hubs and MLOps become more prevalent, 
the potential for monopolistic behaviour by a few dominant Gen-AI service providers 
increases, which can limit access for smaller players and marginalize communities in 
the Global Majority. This dependency on established providers can stifle innovation 
and exacerbate inequalities, as local developers may lack the resources to compete 
effectively in a landscape dominated by major tech companies. 

v. Applications 

The applications layer includes the end-user interfaces and solutions, such as 
chatbots, content generators, and creative tools, that utilize Gen-AI models to perform 
specific tasks. The application layer is expected to see rapid growth and innovation, 
offering significant value-creation opportunities due to the demand from both 
business-to-consumer (B2C) and business-to-business(B2B) applications (Harlin et 
al.,2023).  Gen-AI applications have created a hyper-competitive tech ecosystem that 
requires Gen-AI platforms to develop constant improvements to the quality of their 
Gen-AI algorithms, this demand  presents a wide range of issues such as high 
resource-intensity, which often requires vast amounts of quality data and 
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computational power, aided as much by big data as it is by software and hardware 
(Bashir et al. 2024).   

The use of Gen-AI applications, such as chatbots and content generators, requires 
significant computational resources and energy for real-time processing (Bashir et al. 
2024). The environmental implications of these applications span from the depletion 
of natural resources to the contribution of carbon emissions (Crawford 2024; Strubell 
et.al., 2019). 

vi. Services 

The services component involves existing AI service providers and new niche players 
that specialize in generative AI applications geared to help organizations navigate the 
complexities of implementing Gen-AI technologies and often provide tailored solutions 
for specific industries or functionalities (Harlin et al.,2023). The provision of Gen-AI 
services, including consulting and support, often relies on substantial computational 
resources, contributing to energy consumption and environmental impact. The 
operational emissions associated with running Gen-AI systems can exacerbate 
climate change, necessitating a thorough assessment of the environmental costs 
involved in maintaining these technologies (Bashir et al. 2024). 

The data required to train effective AI models is often controlled by these dominant 
firms, which hoard vast datasets that are crucial for innovation. This concentration 
restricts access for emerging players from the global Majority, who may lack the 
means to acquire or generate comparable datasets. Consequently, this reinforces a 
cycle of dependency where local innovators cannot compete effectively, further 
entrenching the power of established multinational “Big Tech” corporation. 

Overall, the Gen-AI value-chain is dominated by a few large tech companies that control 
substantial computational resources, data, and infrastructure necessary for 
developing and deploying AI technologies. These companies leverage their existing 
market power to dictate terms for access to essential services, creating barriers for 
smaller players and startups. As a result, organizations in the global Majority often find 
themselves reliant on these monopolistic entities for critical resources, stifling their 
ability to develop independent solutions and innovations (Lynn et al., 2023). 

3. Need for Gen-AI Environmental Impact Metrics and Indicators4 

With the increased demand and use of Gen-AI so do the significant environmental 
costs associated with the development, training, and deployment of large-scale AI 
models (Strubell et.al., 2019). As Gen-AI becomes more widespread in applications 

 
4 In the context of assessing the environmental impact of the Gen-AI value chain, it is essential to distinguish 
between metrics and indicators, as both play critical roles but serve different purpose.  
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such as content generation, virtual assistants, and creative tools, its energy 
consumption, resource use, and carbon footprint grow (Bashir, et al.,2024). Training 
state-of-the-art models such as GPT-3 or image-generating generative adversarial 
network (GAN) involves processing massive datasets across large clusters of GPUs 
or TPUs, which consume substantial amounts of energy (Patterson at al.,2021).  

Furthermore, without a consistent way to measure emissions, it becomes difficult for 
companies and institutions to track or reduce their Gen-AI-related environmental 
impacts, including supporting regulations aimed at limiting the carbon emissions of 
tech companies, and holding tech companies accountable (Bashir et al. 2024). 

3.1. Development of Metrics 

The establishment of accurate and comprehensive metrics is crucial for assessing the 
environmental impact of Gen-AI. Accurate metrics are essential to enable the 
comparison of energy footprints between different models and optimization strategies 
and fostering more energy-efficient practices (Bashir et al. 2024).  

Without clear metrics to quantify Gen-AI energy use, it's difficult to gauge the full 
environmental impact of Gen-AI systems. Metrics can help AI developers and 
policymakers better understand, manage and provide a framework for assessing 
energy consumption, resource utilization, and emissions associated with AI 
development, deployment, and usage. Without reliable metrics, it becomes challenging 
to identify areas for improvement, track progress toward sustainability goals, and for 
stakeholders to evaluate the sustainability of AI technologies effectively and inform 
decision-making processes aimed at minimizing ecological harm (OECD, 2022).  

Furthermore, the existence of clear metrics can direct research and development 
efforts toward reducing environmental impact, encouraging innovations that make 
Gen-AI technology more sustainable. 

Lessons from existing initiative reveal that various types of metrics can be employed 
to measure the environmental impact of Gen-AI for a wide range of reporting 
requirements such as environmental, social and governance (ESG), used to evaluate a 
company’s sustainability and ethical impact (EY, 2023). While not an exhaustive list, a 
summary of metrics can include:  

i. Carbon Footprint: This metric quantifies the total greenhouse gas emissions 
produced directly and indirectly by Gen-AI systems, providing insight into their 
contribution to climate change (Bashir et al. 2024). 

ii. Energy Efficiency: This metric assesses the amount of energy consumed per 
unit of output generated by Gen-AI models, helping to identify opportunities for 
reducing energy usage. 
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iii. E-Waste: This metric can assess the amount of e-waste produced as compute 
hardware becomes obsolete due to Gen-AI hardware requirements (UNITAR, 
2024). 

iv. Resource Utilization: This metric evaluates the extraction and consumption of 
natural resources, such as water and minerals, associated with the production 
and operation of Gen-AI infrastructure (Robbins and van Wynsberghe 2022). 

v. Socio-economic Impact: This metric can evaluate the sustainability of Gen-AI 
technologies effectively and inform decision-making processes aimed at 
minimizing ecological harm and facilitating a just transition (PNAI, 2023). 

3.2. Indicators for Sustainability 

Defining indicators is vital for measuring progress toward environmental sustainability 
goals in the context of Gen-AI. These indicators can help stakeholders assess the 
effectiveness of sustainability initiatives and identify areas for further improvement. 
For example, establishing standardized indicators of carbon output, such as kilograms 
of CO2 per hour of computation or per inference task, would drive accountability and 
encourage the adoption of carbon-neutral or lower-emission energy sources (OECD, 
2022).  

Indicators should be clear, measurable, and relevant to the specific environmental 
goals being pursued. They should also consider the unique challenges and 
opportunities presented by Gen-AI technologies. Examples of effective indicators can 
include: 

Reduction in energy consumption. Tracking the decrease in energy usage associated 
with Gen-AI applications can demonstrate progress toward improving energy 
efficiency (Bashir, et al.2024). 

Use of renewable energy sources. Measuring the percentage of energy sourced from 
renewable resources at different stages of the Gen-AI value chain can indicate the 
commitment to sustainable energy practices (Bashir, et al.2024). 

Volume of recycled materials and minerals. Monitoring the number of recycled 
materials used in the production of AI hardware can help assess the effectiveness of 
circular economy (CE) initiatives and leveraging AI to support a just transition to the 
circular economy (JTCE) (Ahmed, 2022). 

3.3. Challenges in Developing and Governing Indicators 

The fast-paced development of AI technologies poses a challenge for regulators and 
standard-setting bodies, the velocity of AI related innovations often outstrips the ability 
of governance frameworks to adapt, resulting in outdated or ineffective measures that 
fail to capture the evolving nature of Gen-AI, including understanding and mitigating 
its environmental implications (Domínguez Hernández et al. 2024). 
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Developing and governing sustainability indicators to assess the environmental 
impact of Gen-AI involves navigating a complex landscape of challenges, particularly 
in the context of global governance, ecological inequities, geopolitical power 
dynamics, and the influence of socio-technical imaginaries predominantly shaped 
innovation ecosystems in the Global North (Ahmed, et al, 2023).  

There is a notable governance deficit in the current international landscape concerning 
governance of Gen-AI and DS, in general (Ahmed and Kirshchlager, 2024; Domínguez 
Hernández et al. 2024). Existing initiatives often lack the coordination and capacity 
necessary to address the complexities of Gen-AI's environmental impacts and the 
fragmentation of governance structures complicates the establishment of coherent 
and inclusive indicators that can effectively measure sustainability across different 
contexts (Bashir et al., 2024). 

Furthermore, many existing standards and best practices for AI are rooted in the socio-
technical contexts of the Global North, which often do not reflect the realities or needs 
of the Global Majority, which can lead to the development of indicators that are not 
universally applicable or that overlook critical environmental, political economy, and 
sociotechnical factors relevant to develop global standards that mitigate risks and 
support the flourishing of diverse ecosystems (Bashir et al., 2024). 

Geopolitical tensions and competition hinder cooperation on global AI governance. 
Long-standing first-order cooperation problems, combined with second-order issues 
stemming from dysfunctional international institutions, complicate the establishment 
of effective governance frameworks for Gen-AI that are equitable and reflective of 
global needs (Bashir et al., 2024) 

The development and governance of indicators for the environmental impact of 
generative AI face significant challenges, particularly due to biases in existing 
frameworks, geopolitical barriers, and the rapid evolution of technology. 
underrepresentation of the Global Majority in discussions about standards and best 
practices, and the overall global ethical, legal, social, and policy (ELSP) aspects also 
contributes to the aforementioned challenges and requires a collaborative approach 
among diverse stakeholders. 

Measuring Gen-AI’s sustainability, such as its carbon footprint, and ensuring 
compliance with global sustainability standards is still in its infancy. Tools like the ESG 
Digital and Green Index are emerging to help, but widespread adoption is needed 
(Raman et al. 2024; Thelisson et al. 2023). Nevertheless, the development of metrics 
and indicators for assessing the environmental impact of Gen-AI essential for 
promoting sustainability in the technology sector (Bashir et al., 2024). By establishing 
comprehensive metrics, engaging in multistakeholder dialogue, and leveraging high-
quality data, stakeholders can work collaboratively to minimize the ecological footprint 
of AI technologies and ensure that their benefits are realized without compromising 
environmental integrity. 
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4. Role of Data Governance in Assessing Environmental Impacts 

Data and its underlying foundations are the determining factors to leverage the 
potential of Gen-AI (Caserta et al., 2023). Effective governance of DS such as Gen-AI 
requires robust data governance frameworks to ensure transparency, accountability, 
and to facilitate just data value creation (JDVC) (Ahmed and Kirschlager, 2024). 

Robust data governance plays a crucial role in establishing clear policies, standards, 
and processes for data management, data governance ensures that the data used to 
train and deploy Gen-AI models is collected, processed, and stored in a responsible 
manner that minimizes environmental harm (PNAI,2023; Bashir et al. 2024).  

Effective data governance also enables transparency and accountability in reporting 
on the environmental footprint of Gen-AI, allowing organizations to identify areas for 
improvement and track progress towards sustainability goals (OECD, 2022). This 
includes measures such as tracking energy consumption and emissions from data 
centres, managing the use of natural resources like water and minerals, and ensuring 
data quality and integrity to avoid the need for excessive retraining of models (OECD, 
2022). Without robust data governance, it's hard to measure the true environmental 
cost at each stage of data processing at each stage of the Gen-AI value chain. 

Furthermore, robust data governance is essential for ensuring equitable access and 
distribution of data dividends when treating data as a DPG (UNICEF, 2023) 

4.1. Importance of Data 

High-quality machine-readable data plays a crucial role in assessing the environmental 
impacts of Gen-AI. In the 2023 PNAI Report, we highlight how robust data governance 
facilities high-quality, accessible datasets, which are necessary for accurate 
measurement and evaluation of sustainability metrics and climate justice (PNAI, 
2023). Reliable data enables stakeholders to quantify the environmental effects of AI 
technologies, including energy consumption, emissions, and resource utilization. Data 
is essential for making informed decisions and implementing effective sustainability 
initiatives (CODES, 2022).  

However, the lack of clear guidelines on data usage and the potential for misuse 
complicate the establishment of reliable indicators for sustainability (OECD, 2022). 

4.2. Types of Data Required 

To accurately assess the environmental impact of Gen-AI, various types of data are 
needed, a comprehensive data collection effort is required, not an exhaustive list but 
focus on the following key areas is crucial:  
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Data on Energy Usage. Information on the energy consumption throughout the Gen-AI 
value chain, particularly during training, deployment, and inference is critical for 
evaluating their carbon footprint and identifying opportunities for efficiency 
improvements. This data should include Electricity usage by data centres and cloud 
infrastructure supporting Gen-AI, fuel consumption by backup generators and 
transportation related to Gen-AI operations, and energy usage per model training run 
and per inference, to name a few (Patterson et al. 2021; Strubell et al.,2019). 

Resource Consumption Data. Data on the extraction and use of natural resources, 
such as water and critical minerals, is necessary to understand the broader 
environmental implications of the Gen-AI value chain, which includes water usage for 
cooling data centres, mineral and metal consumption for manufacturing Gen-AI 
hardware, and use for data center construction and siting (Bashir et al., 2024). 

Emissions Data. Tracking greenhouse gas emissions associated with Gen-AI 
operations is essential for measuring progress toward climate goals and identifying 
areas for reduction, such as direct emissions from on-site fuel combustion, indirect 
emissions from purchased electricity and heat, and emissions from upstream 
activities like manufacturing and transportation, to name a few (Kemene et al.,2024). 

Socioeconomic Data. Assessing the holistic impact of Gen-AI requires understanding 
its socioeconomic implications, particularly in underrepresented regions and to realise 
a just green digital “twin transition”. For example, sex-disaggregated data is crucial for 
identifying differential impacts at the nexus of climate injustice and AI on women and 
men (Ahmed, 2022). Women often have distinct roles and responsibilities in resource 
management and consumption, which can influence how AI technologies are adopted 
and their subsequent environmental effects (Ahmed,2024). Sex disaggregated data 
allows for a nuanced understanding of how technologies affect different genders, 
particularly in terms of resource consumption, energy usage, and emissions (GEDA, 
2024).  Other relevant data can include employment and income effects of Gen-AI 
adoption, access and use of Gen-AI-enabled services by marginalized communities, 
and representation of diverse perspectives in Gen-AI development and governance 
(ILO, 2023; Ahmed et al.,2023; PNAI 2023). 

Contextual Data. Given the global AI divide, to adequately interpret the environmental 
and social impacts of the Gen-AI value chain, contextual data is needed on factors 
such as: Local climate and environmental conditions, existing infrastructure and 
resource constraints, political economy dynamics, and socioeconomic and 
demographic characteristics of affected populations, to name a few (Ahmed, et al., 
2023). 

Collecting and integrating diverse data will enable a holistic assessment of Gen-AI's 
environmental footprint and help guide the development of sustainable practices 
(Bashir et al., 2024). Collaboration among Gen-AI developers, data providers, and 
domain experts is essential to establish comprehensive data collection frameworks 
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and ensure data quality and different types of interoperability (World Bank 2022; 
Gonzalez Morales and Orrell, 2018). 

For example, the energy usage of Gen-AI models and infrastructure is often opaque, 
with limited real-time transparency. Models trained in various geographical locations 
may utilize different sources of energy (renewable vs. non-renewable), complicating 
the ability to track carbon footprints (Ren and Wierman 2024). 

4.3. Key challenges in integrating data governance with environmental 
impact assessments in Gen-AI 

Integrating data governance with environmental impact assessments (EIAs) in the 
Gen-AI value chain presents several key challenges that stem from the rapid 
development of overall of AI technologies, the massive amounts of data involved, and 
the increasingly important focus on sustainability (Bashir et al.,2024). Challenges 
include the following: 

i. Data Complexity (quality, transparency, volume, and integrity) 

Gen-AI relies heavily on both structured and unstructured data, which can be stored in 
various formats and siloed systems (Harlin et al.,2023. Effective data governance is 
needed to ensure that unstructured data is appropriately labelled, categorized, and 
utilized in environmental evaluations and the integration of environmental metrics into 
assessments (UNCTAD, 2024a). 

Managing large-scale AI systems requires significant data from various sources, while 
ensuring transparency and accountability in data governance, and aligning with 
environmental impact standards, is a difficult task (Raman et al. 2024). The complexity 
of this task is particularly challenging for frontier technologies such as Gen-AI, where 
there’s often a lack of clear frameworks for assessing how environmental impacts are 
calculated across complex, multi-stakeholder data environments (Bashir et., al. 2024). 

Gen-AI models also undergo continuous retraining and fine-tuning, which implies 
repeated cycles of data usage, requiring significant energy consumption with each 
retraining cycle (Luccioni et al., 2024). Effective EIAs must account for the repeated 
energy demands of retraining models. If data governance structures don’t extend to 
model lifecycle management, the environmental impact of maintaining large-scale 
Gen-AI models can be underestimated. 

In addition, the complexity of sourcing data from multiple channels makes it 
challenging to establish clear data lineage and traceability. A lack of transparency 
regarding data origins can lead to inaccuracies in environmental assessments, 
highlighting the need for comprehensive data governance practices. Tracking the 
lifecycle of data used in the Gen-AI value chain is essential for understanding its 
environmental implications (Thelisson et al. 2023). 
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Addressing the multidimensional aspects of interoperability is critical in ensuring the 
accuracy and reliability of data used in environmental assessments, inconsistencies 
in data quality can arise from disparate sources, leading to incomplete or misleading 
evaluations of Gen-AI's environmental impact (World Bank, 2022). Without robust data 
governance frameworks, organizations may struggle to maintain high standards of 
data integrity, resulting in flawed assessments and decision-making (OECD,2022). 

Regulatory and Ethical Framework Gaps 

In many regions, there are clear regulations regarding AI ethics, but few that tie AI 
development to environmental sustainability goals such as carbon neutrality. Many 
organizations have established data management systems that may not seamlessly 
integrate with new data governance frameworks required for EIAs, as a result, 
compatibility issues can hinder the effective implementation of data governance 
practices, making it difficult to incorporate environmental metrics into existing 
workflows implications (Thelisson et al. 2023). Navigating the complex regulatory 
landscape surrounding data governance and EIA requires that organizations must 
ensure compliance with various transnational data protection laws while also adhering 
to environmental regulations. This dual requirement can create challenges in aligning 
data governance strategies with the specific needs of environmental assessments in 
the context of Gen-AI, particularly since EIAs depend on well-defined regulatory 
standards for environmental impact. In the AI domain, the regulatory gaps in 
measuring energy consumption, carbon emissions, and e-waste can hinder 
comprehensive environmental assessments (Thelisson et al. 2023). 

Existing frameworks often treat AI and environmental governance separately, 
governance structures focus primarily on privacy, security, and ethical use, but less on 
sustainability and environmental impact (Bashir et al., 2024). The incoherence leads 
to a lack of coordinated policies that can address both the digital and environmental 
aspects together. For example, the European Green Deal emphasizes climate 
neutrality, but there are no dedicated regulatory bodies focused on aligning AI systems 
with these environmental goals (Raman et al., 2024). 

Furthermore, fragmented data localization and sovereignty laws can create challenges 
in terms of balancing local regulations with global Gen-AI value chain operations. 
Accurate environmental impact assessments require transparency in energy 
consumption data. Without data governance frameworks that enforce energy-use 
reporting, particularly in cloud computing and distributed systems, it becomes difficult 
to account for emissions in the value chain (OECD, 2022). 

ii. Gen-AI Value Chain Complexity 

The Gen-AI value chain involves multiple stakeholders, including data providers, cloud 
service operators, and hardware manufacturers (Harlin et al.,2023). Governing data 
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across such a complex supply chain is difficult, particularly when environmental 
standards differ across jurisdictions and industries. 

Fragmented supply chains complicate efforts to conduct comprehensive EIAs. For 
example, data centres in different countries may have varying energy standards, with 
some relying heavily on non-renewable energy sources.  

Without unified data governance, measuring the overall environmental impact across 
the supply chain becomes inconsistent, data governance must be standardized across 
stakeholders to ensure accurate and cohesive reporting on environmental impacts at 
each stage of the Gen-AI value chain (Sebestyén et al., 2021). 

iii. Bias and (Un)Fairness 

Data used to train Gen-AI models often reflects historical and societal biases, which 
can be perpetuated in decision-making (Buolamwini and Gebru 2018). Biases present 
in the training data of Gen-AI models can skew EIA if the data used does not adequately 
represent diverse ecological contexts or stakeholder perspectives, the resulting 
assessments may be biased. These biases can lead to climate apartheid, where 
wealthier nations are better equipped to mitigate and adapt to climate change, while 
poorer communities suffer disproportionately (Guerreo 2023). Effective data 
governance must address these biases to ensure fair and equitable evaluations of 
Gen-AI's environmental impacts (UNCTAD, 2024a).  

Environmental datasets may overlook regions in the Global South or marginalized 
communities, this lack of data equity can result in skewed environmental 
assessments, reinforcing climate injustices where poorer communities, who 
contribute least to climate change, face the most severe consequences (Dosemagen 
and Williams 2022). 

Additionally, the unequal distribution of resources and AI’s reliance on energy-intensive 
infrastructure create disparities in climate adaptation, favouring wealthier nations with 
better technological and data governance infrastructures (Thelisson et al. 2023). 

Furthermore, global climate governance frameworks, often driven by high-income 
countries, tend to exacerbate inequalities (Islam and Winkel, 2017). Gen-AI models 
used in environmental policies may prioritize regions with comprehensive data and 
advanced infrastructures, leaving vulnerable populations behind (Ahmed 2023). 
Furthermore, the carbon footprint and e-waste generated by AI development often 
affect the Global South, reinforcing existing environmental injustices and imbalances 
in global climate governance (UNEP 2024; Guerrero 2023). 
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5. Conclusion  

The generative AI (Gen-AI) value chain significantly impacts environmental 
sustainability through its various stages, each contributing to energy consumption, 
resource utilization, and carbon emissions. As the demand for Gen-AI continues to 
grow, its associated electricity demand is rising, which runs counter to the necessary 
efficiency gains needed to achieve net-zero greenhouse gas emissions. Gen-AI’s 
relentless demand for computing power and the resulting larger carbon footprints 
highlights the urgent need for a comprehensive evaluation of the environmental 
implications of Gen-AI technologies. 

While generative AI holds potential benefits for various sectors, its environmental 
impacts pose significant risks—particularly for marginalized communities in the global 
Majority. Addressing these challenges requires a concerted effort to ensure equitable 
access to technology and participation in decision-making processes that consider the 
unique needs and vulnerabilities of these populations. To enhance environmental 
sustainability within the Gen-AI value chain, it is essential to establish robust metrics 
and indicators that accurately assess its environmental impact. This includes tracking 
energy usage, resource consumption, and emissions throughout the lifecycle of AI 
systems. Engaging a diverse range of stakeholders in multistakeholder dialogues can 
facilitate the development of comprehensive frameworks that balance economic 
growth with environmental stewardship.  

Addressing bias and fairness in integrating data governance with environmental 
impact assessments in Gen-AI requires equitable representation in datasets, 
transparent AI models, and inclusive global climate governance frameworks. The 
intersection of Gen-AI and environmental policy must prioritize the needs of vulnerable 
populations to ensure that technological innovation does not exacerbate global 
climate inequalities or contribute to further climate injustice. 

By fostering collaboration and prioritizing sustainability in the design, deployment, and 
governance of Gen-AI technologies, stakeholders can work towards a future where the 
benefits of AI are realized without compromising ecological integrity or exacerbating 
social inequalities. The integration of data-driven approaches and responsible 
practices will be crucial in steering the Gen-AI value chain towards a more sustainable 
trajectory, ultimately contributing to a greener and more resilient planet. 
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6. Multi-stakeholder Recommendations for Policy Action  

We recommend the following policy actions: 

Develop Comprehensive Sustainability Metrics for Gen-AI: Governments and 
international organizations must create standardized metrics to assess the 
environmental impact of Gen-AI throughout its value chain, including energy 
consumption, resource extraction, carbon emissions, and e-waste. These metrics 
should align with the UN Sustainable Development Goals (SDGs) and account for 
impacts on biodiversity, ecosystems, and resource sustainability. 

Sustainability metrics should also be tailored to the contextual realities of low- and 
middle-income countries (LMICs) in the global Majority. These metrics should 
measure the environmental impact of AI technologies without creating regulatory and 
administrative burdens that perpetuate dependency, resource extraction, or unequal 
wealth creation. Such standards should focus on fostering local innovation, equitable 
resource use, and sustainable digital economies. 

Support Regionally Relevant Innovation Ecosystems: Encourage innovation that 
supports climate change mitigation, adaptation, and loss and damage with policies 
that incentivize Gen-AI applications in environmental conservation, resource 
efficiency, and sustainability. These policies should also foster regionally relevant 
digital innovation ecosystems, ensuring local entrepreneurs, businesses, and 
academia contribute to green digital economies, particularly in the global Majority. 
Policymakers should encourage investment in regionally relevant green-digital 
technologies, prioritizing innovations that drive climate change mitigation and 
adaptation. These policies should emphasize the importance of local innovation 
ecosystems, where businesses, entrepreneurs, and academia from LMICs play a 
central role in co-creating green jobs and sustainable digital livelihoods. 

National governments must take the lead in developing locally relevant sustainability 
policies that support the green-digital transition. These policies should focus on 
fostering local innovation ecosystems, prioritizing climate resilience, and addressing 
the specific environmental challenges faced by LMICs. Organizations such as the 
World Bank, UNCTAD, and UNDP should support LMICs with financial resources, 
capacity building, and technical assistance to help them develop sustainable Gen-AI 
infrastructure.  

Strengthen Global AI Governance Frameworks: Introduce robust global AI governance 
frameworks to integrate environmental sustainability in AI technologies. This includes 
global cooperation to mitigate risks such as surveillance, privacy violations, and 
climate inequalities, and to ensure Gen-AI development does not exacerbate existing 
socioeconomic and environmental challenges. 
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IGF should provide a platform for multistakeholder dialogues on the green-digital 
transition, ensuring that LMICs have an equal voice in shaping global AI and 
sustainability policies. These discussions should focus on creating standards that 
support the unique environmental and socioeconomic realities of LMICs. IGF should 
focus on building the capacity of LMICs to engage in global AI governance and 
sustainability discussions. This includes providing technical assistance, promoting 
knowledge exchange, and ensuring that LMICs have the resources to develop and 
implement green-digital transition strategies. 

Global dialogue must emphasize shared responsibility for the environmental impacts 
of Gen-AI, ensuring that LMICs are not disproportionately affected by the resource 
extraction, energy consumption, and e-waste associated with AI technologies. 
Cooperation should focus on reducing the environmental burden on LMICs and 
promoting responsible AI innovation globally. 

PNAI should advocate for the inclusion of LMICs in global AI governance discussions, 
ensuring their voices are heard and their needs are addressed. This includes 
supporting the development of sustainability frameworks that are co-created with 
LMICs, rather than imposed by external actors. PNAI should lead the creation of 
sustainability guidelines for Gen-AI that reflect the realities of LMICs. These guidelines 
should focus on minimizing the environmental impact of AI in resource-constrained 
regions, emphasizing local capacity building and responsible resource use 

Leverage Official Development Assistance (ODA) for Sustainable Gen-AI: Use 
international development assistance (IDA), including ODA, to support lower-income 
and middle-income countries (LMICs) in developing sustainable AI infrastructure and 
promoting AI-based climate solutions. Investments should target local capacity 
building, green jobs creation, and technological infrastructure that empowers these 
regions. Multistakeholder dialogue is essential to ensure that AI governance 
frameworks and sustainability policies reflect the realities of LMICs. Cooperation 
between governments, private companies, international organizations, and civil 
society is crucial for developing AI standards that prioritize environmental equity and 
resource sustainability. ODA should aim to empower LMICs with the necessary 
technological tools and resources to develop their own AI systems. This includes 
providing access to open-source AI technologies, data, and platforms that enable local 
innovation. Empowering these countries to create their own Gen-AI solutions will 
ensure that they can tailor technologies to their specific needs and context. IDA should 
be revitalised to reduce dependency on foreign consultants, policy research, 
infrastructure, and partners; and instead focus on empowering LMICs to implement 
green-digital standards and the overall flourishing of local innovation ecosystems that 
reflect their unique economic and environmental contexts by funding the creation of 
local talent in both policy and technical capabilities. 
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Integrate Circular Economy Principles: Establish policies that promote circular 
economy practices in Gen-AI’s value chain, encouraging the reuse and recycling of AI 
hardware and reducing e-waste. These policies should address the environmental 
costs of raw material extraction and ensure responsible disposal of obsolete AI 
systems. The extraction of raw materials for AI hardware has significant 
environmental implications, including habitat destruction, pollution, and carbon 
emissions. Circular economy policies should promote responsible sourcing of 
materials, encouraging companies to use recycled materials or sustainably sourced 
alternatives. Additionally, fostering partnerships with organizations focused on 
sustainable mining practices can help mitigate the environmental impact of resource 
extraction. Raising awareness about the importance of circular economy practices in 
AI technologies among consumers and businesses is essential. Educational 
campaigns can inform stakeholders about the benefits of reusing and recycling AI 
hardware and the environmental implications of e-waste. 

Data Governance with an Environmental Focus: Ensure that data governance 
frameworks are developed to address both environmental and social impacts of AI. 
This includes equitable data access, transparency in AI models, and the integration of 
environmental data into decision-making processes, ensuring that vulnerable 
populations are not disproportionately affected by AI innovations. Data governance 
frameworks must ensure that data is accessible to all stakeholders, particularly 
marginalized and vulnerable populations. This equitable access is crucial for 
empowering communities to engage with AI technologies, participate in decision-
making processes, and mitigate potential adverse effects of AI innovations. 
Incorporating environmental data into AI decision-making processes is essential for 
creating sustainable solutions. Data governance frameworks should promote the use 
of environmental metrics alongside traditional performance indicators, allowing 
organizations to assess the ecological footprint of their AI applications. By prioritizing 
sustainability, organizations can minimize resource consumption and environmental 
degradation. 

Apply Decolonial Socio-Technical Foresight: This approach combines forward-
looking analysis with a decolonial lens, offering several key advantages in Gen-AI 
governance and development. Foresight allows countries in the global Majority to 
envision futures rooted in their socio-political contexts and aspirations, rejecting 
imposed technological paradigms from the wealthier nations with geopolitical heft. 
This can promote autonomy and resilience while amplifying voices historically 
marginalized in tech governance. Decolonial socio-technical foresight empowers 
countries in the global Majority to not only react to global Gen-AI trends but to shape 
a future where Gen-AI serves local interests and long-term development. This forward-
thinking approach enables African countries to proactively decide what their Gen-AI 
future will look like, ensuring that technological progress aligns with intergenerational 
justice, sustainability, and self-determination. 
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APPENDIX 1: Case Studies 

The environmental impact of Gen-AI is a significant concern, these technologies also have the 
potential to contribute positively to sustainability efforts. While AI/ML can optimize processes 
to enable the exploration of solutions for a wide range of environmental and climate-related 
issues, including natural disasters, greenhouse gas emissions, biodiversity monitoring, 
agriculture, and weather and climate modelling, overall facilitating progress in climate change 
mitigation efforts, in some sectors they may paradoxically also lead to negative externalities 
such as increased resource extraction in other areas. Case studies showcasing the use of Gen-
AI for environmental conservation, resource optimization, and climate change mitigation can 
help illustrate the benefits and inform best practices. 
 

CASE STUDY 1: Environmental Sustainability and AI for Forest Fire 
Management in the ASEAN Countries 

Fire-Net with a code name KK-2022-026 is an important initiative by Malaysian and Indonesian 
researchers to ensure the automated detection of forest fires using satellite images. This 
project is wholly funded by the Asia Pacific Telecommunity through extra-budgetary funds 
from the Republic of Korea to support the strategic initiative of 2021-2023 (Saleh et al., 2024). 
It is a known factor that forest fire is a serious threat to our ecosystem, as such uncontrollable 
burning can lead to severe destruction of the precious flora and fauna, especially in the ASEAN 
region. Therefore, a forest fire incident needs to be detected as early as possible, while the fire 
patch is still relatively small in size. Rapid action to put off the fire can reduce the negative 
consequences to the environment. We have witnessed a lot of uncontrollable fire cases, 
whereby the destruction of our forest is huge. This is not factoring in the side effect of 
transboundary haze, which is very harmful to human respiration, especially to younger kids. 

However, finding the fire patches through manual observation of the satellite images is not a 
viable option, mainly due to the large areas that need to be observed. For this reason, 
governments need to come out with a monitoring system that allows them to detect forest 
fires automatically. Hence, an advanced artificial intelligence (AI) based system has been 
developed as an effective solution to this problem through pixel-based segmentation of the 
satellite images that can identify small fire patches with a 3-meter resolution. This AI approach 
enables the monitoring system to have wide forest coverage with relatively lower operating 
costs. The system is based on Landsat-8 satellite data with three reduced channels of 
information to allow a faster detection rate. The system aims to identify small as well as large 
fire patches, which is a difficult task in most AI systems. To overcome this challenge, the multi-
scale AI approach has been developed to enable multiple-size forest fire patches to be 
detected. 

Both small and large fire patches are important to be detected and quantified. An accurate 
detection of small fire patches allows the firefighters to put off the fire while it is still small. 
While, a large quantification of fire patches, especially through segmentation tasks is 
important information for the firefighters so that they can plan the safe and rescue mission 
effectively, by allocating the resources at the strategic areas to further reduce the negative 
consequences of the wildfire. In this case, AI with remote sensing technology can help us 
detect, locate, and quantify the affected regions without the need to go closer to the burned 
areas. The AI system also can reduce the possibility of human errors due to fatigue when 
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operating for a long time. The fire incidents might last for a few days and continual updates of 
the affected areas are crucially needed for the optimal search and rescue operation. Finally, 
this Fire-Net project will benefit our environment by enabling faster detection of forest fire 
patches using AI technology, which can save our precious flora and fauna. 

CASE STUDY 2: Environmental Sustainability and AI for Climate Change 
Management in African Countries 

Artificial Intelligence (AI) for Climate Action Innovation Research Network is one of the 
initiatives under the Artificial Intelligence for Development Africa that is headed by Ghana 
(AI4D Africa, 2024). This project aims to produce better adaptation and mitigation strategies 
for climate variability to promote environmental preservation in various African countries. AI 
is utilized as the core technology that will help to come out with better decision-making 
through automated systems. This initiative is also meant to develop research capacity in sub-
Saharan African countries so that they will support the international AI policy, especially with 
regard to environmental issues. The primary grant is funded by the Swedish International 
Development Cooperation Agency and Canada’s International Development Research Centre. 
The total funding for all 11 AI projects is CA$ 1,158,100 which involves nine African countries. 

One of the notable projects focuses on leveraging AI to estimate greenhouse gas emissions. 
The system uses drones to map livestock and farm areas in the Mubende District of the Central 
Region of Uganda. This project utilizes remote sensing technology because of the low 
sampling cost compared to ground-based sensing which will also enable larger observation 
areas. Under the same initiative, another interesting project was proposed by a group of 
researchers from Kenya that developed an AI-based mobile application tool to help with 
disease detection on commercial crops. A few diseases such as Taro Leaf Blight and 
Phytophthora Colocasiae can be detected by using a smartphone just by taking pictures of the 
commercial crops. The AI system generates a fast detection response using single-shot 
detector technology that provides sampling boxes in a single pass. All the candidate boxes of 
possible diseases are then passed to a classification module in order to identify the type of 
the diseases. This lightweight technology is important for Kenya-based applications, whereby 
the cost of hardware is relatively high, and the system needs to be able to work on a simple 
mobile application. 

Apart from that, a project from République du Bénin focuses on using conventional machine 
learning such as Artificial Neural Networks and Support Vector Machine to analyse the 
vulnerability of climate change to mangrove ecosystems. Even though the mangrove 
ecosystem is not large in size relative to the other land categories, it is still an important 
ecosystem for housing and commercial resources. Thus, it is important for the locals to 
assess the mangrove's vulnerability to any change in climate, especially the issue of sea level 
rise that might affect their safety. The AI is also trained using bagging methodology to further 
improve the accuracy of the system, which is validated by using various important metrics, 
especially the receiver operating characteristic metric. Besides that, one of the important 
things in African countries is to predict the energy potential as the demand for electricity is 
continually rising every year. Hence, a group of researchers from Cameroon focuses on using 
AI to predict the possibility of using more renewable energy to support a sustainable 
environment. Their main aim is to analyse spatial trends in landscape dynamics that include 
the rate of deforestation as well as the seasonal effect of surface water resources, which will 
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affect the adoption of renewable energy. In conclusion, this initiative covers a wide scope of 
AI usage in promoting a sustainable environment in African countries. 

CASE STUDY 3: Improving Air Quality with Generative AI in Ghana 

Ghana faces significant challenges due to air pollution, ranking as the 27th most polluted 
country in the world. Many African countries, including Ghana, are adopting low-cost air quality 
sensors to monitor air quality continuously. Hence, an initiative through The Sensor Evaluation 
and Training Centre for West Africa (Afri-SET, 2024) has been introduced that aims to 
overcome the issues of 1) standardization of the air quality data by addressing the data 
integration problem of low-cost sensors, 2) automation of data ingestion by reducing manual 
intervention required for data synchronization, and 3) improvement of air quality monitoring 
systems by providing accurate and timely air quality data. 

They are three key components need to be executed effectively in order to deliver intelligent 
low-cost air quality sensors. The first component is the utilization of generative AI for data 
standardization. Currently, Afri-SET deals with disparate data formats from various sensor 
manufacturers, hence, making data synchronization resource-intensive. This issue can be 
solved by utilizing generative AI, specifically Large Language Models (LLMs), to standardize 
sensor data outputs. The AI task is to convert various data formats into a unified format, 
creating a manufacturer-agnostic database. The second component is to automate the data 
integration of the low-cost air quality sensors, specifically through standardized raw data files 
(CSV or JSON). In case the sensors have been recorded before, the solution can retrieve and 
execute previously generated Python codes to transform the data. However, if the device is 
newly introduced to the system, the AI need to generate the necessary Python code to 
standardize the data, which is then saved for future use. Some of the available platforms are 
Amazon Bedrock, Pandas, AWS Glue, and Amazon Athena. The third component is to embed 
human-in-the-loop mechanism, so that data quality can be ensured while reducing the burden 
on Afri-SET's resources. This component can be realized by introducing operators who can 
validate new data formats before the AI generates transformation code. 

The general flow of the proposed workflow consists of three phases. The first phase is to 
ensure effective data ingestion through Amazon S3, whereby the device record needs to be 
validated first. For the case of new devices or sensors, the operator needs to validate the 
format manually, before the transformation codes are generated by the AI. The second phase 
concerns on the data transformation, in which the AI-generated Python functions task is to 
convert JSON files to Pandas data frames, pivot the transformed data as needed, and clean it 
to unify the column names. Finally, the transformed data is stored in Amazon S3 in Parquet 
format. The third phases focus on data storage and analysis, which is set to be in a 
standardized format using Amazon S3. Then, AWS Glue and Amazon Athena are used for 
further data analysis and visualization. 

The results from Afri-SET initiatives have managed to minimize the cost of AI invocation by 
generating reusable code only when new data formats are detected. It has also increased 
workflow efficiency by reducing manual data engineering work from months to days. 
Furthermore, it allows better system scalability, whereby the solution can be scaled and 
implemented across West Africa for a broader impact. Apart from that, the quality of the data 
is also better, which is crucial in order to ensure accurate and reliable air quality data for 
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stakeholders. In a nutshell, this solution allows for easy data integration, fostering community 
empowerment and encouraging innovation. It represents a significant step towards a cleaner 
and healthier environment in Ghana and potentially other African countries. By leveraging AWS 
technology and generative AI, Afri-SET can deliver accurate air quality data, inform 
policymaking, and drive positive social impact. 

CASE STUDY 4: A Study on the Environmental Impact of Generative-AI 

Using a multi-criteria life cycle assessment (LCA) approach, Berthelot et al. (2024) have 
studied on the estimation of the environmental impact of Generative AI services by examining 
its ecological footprint. With the increasing popularity of generative AI models, especially for 
the applications of conversational agents and image creation, there are growing 
environmental concerns about the high computational needs of these models, particularly with 
regard to their energy, and greenhouse gas (GHG) emissions. The study demonstrates that the 
growing usage of digital services, particularly those driven by generative AI has produced more 
energy wastage, which directly contributes to the shortage of resources, which directly 
contributes to global warming. The researchers have focused on measuring the effective 
amount of electricity used for fitting the AI models. Many AI researchers do not realize the 
significant impacts of training the models, such as the impact of large data centre 
infrastructure needed to implement these AI models, which results in inadequate evaluations 
of their environmental impact. 

To assess the environmental costs related to the full life cycle of generative AI services, the 
authors suggested a thorough life cycle assessment (LCA) methodology that covers various 
facets of costs such as web hosting, inference process, and training the models. Their 
methodology also takes into account the environmental expenses associated with data 
centers, networks, and user terminals. To be specific, they have used a stable diffusion model, 
which is a text-to-image generative AI model, to illustrate their proposed methodology. In short, 
the study's findings demonstrate the considerable environmental impact of generative AI 
services. For example, one year of stable diffusion operation has resulted in 360 tons of CO2 
equivalent, which is 8.93 million megajoules of energy utilized and also contributes to the 
depletion of natural resources. These results demonstrate that the energy-intensive nature of 
AI goes beyond the training phase of the model, whereby a significant amount of the 
environmental cost originates from the inference phase. 

The study also highlights other significant elements that considerably affect the overall 
environmental impact, such as network traffic and end-user device energy consumption. The 
authors justified through sensitivity analysis that the frequency of model retraining and the 
usage rates of data centre equipment can have a significant impact on the environment. The 
study concludes by suggesting the necessity of creating more effective and efficient AI 
systems by considering the whole life cycle usage of the model into account when doing 
environmental evaluations to better comprehend and lessen the ecological effects of 
generative AI. It is also important to have a closer collaboration between hardware developers 
and AI service providers, in order to develop more ethical and sustainable AI technology 
through an integrated approach. 
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APPENDIX 2: Gen-AI Value Chain Analysis (VCA) vs Life Cycle 
Assessment (LCA) 

There are similarities and differences between a comprehensive Life Cycle Assessment (LCA) 
and a Value Chain Analysis (VCA) when it comes to capturing the environmental footprint of 
generative AI (Gen-AI) models. The data collection processes for VCA and LCA differ 
significantly in their approaches, methodologies, and the types of data they prioritise.  

i. Data Collection in Value Chain Analysis (VCA) 

VCA emphasizes economic activities and value creation, i.e. the interrelated activities that 
create value from raw material extraction to the final product delivery. Data collection in VCA 
typically involves gathering information on each stage of the value chain, including production, 
distribution, marketing, and sales, to name a few (Investopedia, 2024).This includes data on 
input costs (e.g., raw materials, labor) and output prices to assess where value is added. While 
VCA can include environmental considerations, its primary focus is on socioeconomic value 
creation. It may not comprehensively account for the environmental impacts of each stage 
unless explicitly integrated into the analysis (DEFA, 2017). 

ii. Data Collection in Life Cycle Assessment (LCA) 

LCA follows a cradle-to-grave approach, collecting data on every stage of a product's life 
cycle—from raw material extraction through production, use, and disposal. This thorough 
approach allows for a more nuanced understanding of a product's environmental footprint. 
ensures that all environmental impacts are considered. LCA has been widely adopted for the 
AI ecosystem (Luccioni,et al,. 2022), given that it follows standardized methodologies (e.g., 
ISO 14040 and 14044) that provide guidelines for data collection, ensuring consistency and 
comparability across assessments (DEFA, 2017). LCA requires extensive data on energy 
consumption, emissions, resource use, and waste generation for each life cycle stage. This 
includes primary data from manufacturers and suppliers, as well as secondary data from 
databases and literature through the collection of both quantitative data (e.g., CO2 emissions 
in kg) and qualitative data (e.g., potential environmental impacts). LCA requires detailed, 
product-specific data on materials, energy use, emissions, and waste for each life cycle stage. 

While both LCA and VCA aim to assess the environmental and economic aspects of a product 
or service, LCA has a more comprehensive environmental focus throughout the entire life 
cycle, while VCA emphasizes the value-adding activities and economic distribution along the 
supply chain. LCA provides a comprehensive environmental assessment and helps identify 
potential trade-offs between different environmental impacts, while VCA emphasises 
economic value-adding activities and may rely on aggregated data, while LCA adopts a 
comprehensive approach to assess environmental impacts across the entire life cycle of a 
products (DEFA, 2017). VCA may rely more on aggregated data and industry averages, 
especially for upstream and downstream activities. VCA considers the broader economic and 
social aspects in addition to environmental factors and can identify opportunities for value 
creation and competitive advantage along the value chain, which may be particularly useful 
for governance in ecosystems with less AI maturity such as the global Majority.  
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Understanding these differences is crucial for effectively utilizing each analysis method to 
inform sustainability decisions and strategies.  Table xx summarizes the key similarities and 
differences between LCA and VCA in capturing the environmental footprint of Gen-AI models.  

Table 1: Summary of Gen-AI Value Chain Analysis (VCA) vs Life Cycle Assessment (LCA) 

Aspect Life Cycle Assessment (LCA) Value Chain Analysis (VCA) 

Scope Comprehensive, covering the 
entire life cycle from raw 
material extraction to 
disposal. 

Focuses on value-adding activities along 
the supply chain from raw materials to 
market. 

Perspective Product-oriented, tracing 
environmental burdens 
associated with a specific 
product or service. 

Value chain-oriented, considering all 
activities and actors involved in bringing 
a product to market. 

Data 
Requirements 

Requires detailed, product-
specific data on materials, 
energy use, emissions, and 
waste for each life cycle 
stage. 

May rely on aggregated data and industry 
averages, especially for upstream and 
downstream activities. 

Methodology Follows standardized 
methodologies (e.g., ISO 
14040 and 14044) for 
consistency and 
comparability. 

Lacks a universally accepted standard 
methodology, making comparisons 
between studies challenging. However, 
VCA may utilize more flexible and varied 
approaches depending on the specific 
context. 

Pros - Comprehensive 
environmental assessment 
- Identification of trade-offs 
- Comparability across 
products 

- Broader perspective including economic 
and social technical, and political 
economyaspects 
- Identification of value creation 
opportunities 
- Flexibility across industries 

Cons - Data-intensive and time-
consuming 
- Sensitive to assumptions 
and data quality 
- Limited scope regarding 
economic and social aspects 

- Limited environmental focus 
- Lack of standardization 
- Often relies on aggregated data, missing 
nuances 

Application in 
Gen-AI 

Quantifies specific 
environmental impacts 
associated with Gen-AI 
development and use. 

Provides insights into broader economic 
and social implications of Gen-AI 
technologies across the value chain. 
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For the aim of this discussion paper the focus remains on capturing multidimensional 
dynamics associated with the environmental toll of Gen-AI. However, we acknowledge that in 
the context of Gen-AI models, a combination of LCA and VCA can provide a more 
comprehensive understanding of the environmental footprint. By leveraging both approaches, 
stakeholders can make more informed decisions to minimize the environmental impact of 
Gen-AI models while maximizing associated benefits. 

  



31 
 

REFERENCES 

Ahmed, S. (2023). AI and the circular economy in Africa: Key considerations for a just 
transition. https://www.dataeconomypolicyhub.org/post/aiandthecirculareconomy 

Ahmed, S., & Kirchschläger, P. G. (2024). Governing global existential AI risks: Lessons from 
the International Atomic Energy Agency. T20 Brazil. 
https://www.t20brasil.org/media/documentos/arquivos/TF05_ST_05_GOVERNING_GLOBAL
_EX66d7093af049f.pdf 

Ahmed, S., Tobing, D. H., & Soliman, M. (2023). Why the G20 should lead multilateral reform 
for inclusive responsible AI governance for the Global South. 
https://www.dataeconomypolicyhub.org/items/why-the-g20-should-lead-multilateral-reform-
for-inclusive-responsible-ai-governance-for-the-global-south 

AI4D Africa. (2024). AI for climate action innovation research. https://africa.ai4d.ai/project/ai-
for-climate-action-innovation-research/ 

Afri-SET. (2024). https://afriset.org/ 

Bashir, N., Donti, P., Cuff, J., Sroka, S., Ilic, M., Sze, V., Delimitrou, C., & Olivetti, E. (2024). The 
climate and sustainability implications of generative AI. MIT Exploration of Generative AI. 
https://mit-genai.pubpub.org/pub/8ulgrckc/release/2 

Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the dangers of 
stochastic parrots: Can language models be too big? 🦜. In Proceedings of the 2021 ACM 
Conference on Fairness, Accountability, and Transparency (FAccT ’21), 610–623. 
https://doi.org/10.1145/3442188.3445922 

Berthelot, A., Caron, E., Jay, M., & Lefèvre, L. (2024). Estimating the environmental impact of 
generative-AI services using an LCA-based methodology. Procedia CIRP, 122, 707–712. 

Bond-Taylor, S., Leach, A., Long, Y., & Willcocks, C. G. (2022). Deep generative modelling: A 
comparative review of VAEs, GANs, normalizing flows, energy-based and autoregressive 
models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11), 7327–7347. 
https://doi.org/10.1109/TPAMI.2021.3116668 

Brundage, M., Avin, S., Wang, J., Belfield, H., Krueger, G., Hadfield, G., Khlaaf, H., et al. (2020). 
Toward trustworthy AI development: Mechanisms for supporting verifiable claims. arXiv. 
https://arxiv.org/abs/2004.07213v2 

Buolamwini, J., & Gebru, T. (2018). Gender shades: Intersectional accuracy disparities in 
commercial gender classification. In Proceedings of the 1st Conference on Fairness, 
Accountability and Transparency (PMLR), 77–91. 
https://proceedings.mlr.press/v81/buolamwini18a.html 

Burkacky, O., Patel, M., Pototzky, K., Tang, D., Vrijen, R., & Zhu, W. (2024, March 29). Generative 
AI: The next S-curve for the semiconductor industry? McKinsey & Company. 
https://www.mckinsey.com/industries/semiconductors/our-insights/generative-ai-the-next-
s-curve-for-the-semiconductor-industry 

CODES. (2022). Action plan for a sustainable planet in the digital age. Zenodo. 
https://doi.org/10.5281/ZENODO.6573509 

Crawford, K. (2024). Generative AI’s environmental costs are soaring — and mostly secret. 
Nature, 626(8000), 693. https://doi.org/10.1038/d41586-024-00478-x 

Digital Public Goods Alliance. (2023). Exploring data as and in service of the public good. 
https://digitalpublicgoods.net/PublicGoodDataReport.pdf 



32 
 

Domínguez Hernández, A., Krishna, S., Perini, A. M., Katell, M., Bennett, S. J., Borda, A., Hashem, 
Y., et al. (2024). Mapping the individual, social and biospheric impacts of foundation models. 
In Proceedings of the 2024 ACM Conference on Fairness, Accountability, and Transparency 
(FAccT ’24), 776–796. https://doi.org/10.1145/3630106.3658939 

Dosemagen, S., & Williams, E. (2022). Data usability: The forgotten segment of environmental 
data workflows. Frontiers in Climate, 4. https://doi.org/10.3389/fclim.2022.785269 

Elia, M. (2023). Climate apartheid, race, and the future of solidarity: Three frameworks of 
response (Anthropocene, Mestizaje, Cimarronaje). Journal of Religious Ethics, 51(4), 572–610. 
https://doi.org/10.1111/jore.12464 

Gender and Environment Data Alliance (GEDA). (2024). Gender and environment data alliance. 
https://genderenvironmentdata.org/ 

Gmyrek, P., Berg, J., & Bescon, D. (2023). Generative AI and jobs: A global analysis of potential 
effects on job quantity and quality. https://www.ilo.org/publications/generative-ai-and-jobs-
global-analysis-potential-effects-job-quantity-and 

González Morales, L., & Orrell, T. (2018). Data interoperability: A practitioner's guide to joining 
up data in the development sector (60 pp.). United Nations Statistics Division. 
https://doi.org/10.25607/OBP-1772 

Guerrero, D. (2023). Colonialism, climate change and climate reparations. Global Justice Now. 
https://www.globaljustice.org.uk/blog/2023/08/colonialism-climate-change-and-climate-
reparations/ 

Härlin, T., Rova, G. B., Singla, A., Sokolov, O., & Sukharevsky, A. (2023). Exploring opportunities 
in the generative AI value chain. McKinsey & Company. 
https://www.mckinsey.com/capabilities/quantumblack/our-insights/exploring-opportunities-
in-the-generative-ai-value-chain 

IBM. (2023). What are AI hallucinations? https://www.ibm.com/topics/ai-hallucinations 

Intel. (2024). Generative AI. https://www.intel.com/content/www/us/en/developer/topic-
technology/artificial-intelligence/training/generative-ai.html 

International Science Council. (2024). Climate inequality: The stark realities and the road to 
equitable solutions. https://council.science/blog/climate-inequality-the-stark-realities-and-
the-road-to-equitable-solutions/ 

Islam, S. N., & Winkel, J. (2017). Climate change and social inequality (Working Paper No. 152). 
United Nations, Department of Economic and Social Affairs. 

Janjeva, A., et al. (2024). Semiconductor supply chains, AI and economic statecraft: A 
framework for UK-Korea strategic cooperation. CETAS. 
https://coilink.org/20.500.12592/tmpg9rd 

Kalantzakos, S. (2020). The race for critical minerals in an era of geopolitical realignments. 
The International Spectator, 55(3), 1–16. https://doi.org/10.1080/03932729.2020.1786926 

Lehuedé, S. (2024). An elemental ethics for artificial intelligence: Water as resistance within 
AI’s value chain. AI & SOCIETY. https://doi.org/10.1007/s00146-024-01922-2 

Luccioni, S., Trevelin, B., & Mitchell, M. (2024). The environmental impacts of AI: Policy primer. 
Hugging Face. https://doi.org/10.57967/hf/3004 

Lynn, B., von Thun, M., and Montoya, K.(2023). AI in the Public Interest: Confronting the 
Monopoly Threat. Open Markets Institute. 
https://www.openmarketsinstitute.org/publications/report-ai-in-the-public-interest-
confronting-the-monopoly-threat 



33 
 

OECD. (2022). Measuring the environmental impacts of artificial intelligence compute and 
applications. https://www.oecd.org/en/publications/2022/11/measuring-the-environmental-
impacts-of-artificial-intelligence-compute-and-applications_3dddded5.html 

Patterson, D., Gonzalez, J., Le, Q., Liang, C., Munguia, L.-M., Rothchild, D., So, D., Texier, M., & 
Dean, J. (2021). Carbon emissions and large neural network training. 
https://doi.org/10.48550/arXiv.2104.10350 

Perkins, T. (2024). Industry acts to head off regulation on PFAS pollution from 
semiconductors. The Guardian. 
https://www.theguardian.com/environment/article/2024/aug/24/pfas-toxic-waste-pollution-
regulation-lobbying 

Policy Network on AI. (2022). Responsible AI in Africa: Bridging the policy gap through 
multistakeholder partnerships. AI4D Africa. https://ai4d.ai/blog/responsible-ai-in-africa-
policy-network/ 

Raman, R., Pattnaik, D., Lathabai, H. H., Kumar, C., Govindan, K., & Nedungadi, P. (2024). Green 
and sustainable AI research: An integrated thematic and topic modeling analysis. Journal of 
Big Data, 11(1), 55. https://doi.org/10.1186/s40537-024-00920-x 

Ren, S., & Wierman, A. (2024). The uneven distribution of AI’s environmental impacts. Harvard 
Business Review. https://hbr.org/2024/07/the-uneven-distribution-of-ais-environmental-
impacts 

Robbins, S., & van Wynsberghe, A. (2022). Our new artificial intelligence infrastructure: 
Becoming locked into an unsustainable future. Sustainability, 14(8), 4829. 
https://doi.org/10.3390/su14084829 

Strubell, E., Ganesh, A., & McCallum, A. (2020). Energy and policy considerations for modern 
deep learning research. In Proceedings of the AAAI Conference on Artificial Intelligence, 34(09), 
13693–13696. 

Sebestyén, V., Czvetkó, T., & Abonyi, J. (2021). The applicability of big data in climate change 
research: The importance of system of systems thinking. Frontiers in Environmental Science, 
9. https://doi.org/10.3389/fenvs.2021.619092 

The Global E-Waste Monitor. (2024). The global E-waste monitor 2024. 
https://ewastemonitor.info/the-global-e-waste-monitor-2024/ 

Thelisson, E., Mika, G., Schneiter, Q., Padh, K., & Verma, H. (2023). Toward responsible AI use: 
Considerations for sustainability impact assessment. 
https://doi.org/10.48550/arXiv.2312.11996 

United Nations Conference on Trade and Development (UNCTAD). (2021). Technology and 
innovation report: Catching technological waves—Innovation with equity. 
https://unctad.org/system/files/official-document/tir2020_en.pdf 

United Nations Conference on Trade and Development (UNCTAD). (2024a). Digital economy 
report 2024: Shaping an environmentally sustainable and inclusive digital future. 
https://unctad.org/publication/digital-economy-report-2024 

United Nations Conference on Trade and Development (UNCTAD). (2024b). Critical minerals 
boom: Global energy shift brings opportunities and risks for developing countries. 
https://unctad.org/news/critical-minerals-africa-holds-key-sustainable-energy-future 

United Nations Environment Programme (UNEP). (2024). Navigating new horizons: A global 
foresight report on planetary health and human wellbeing. https://council.science/wp-
content/uploads/2024/07/Global-Foresight-Report-2024-FINAL.pdf 



34 
 

United Nations Industrial Development Organization (UNIDO). (2024). Development dialogue 
on digital transformation and artificial intelligence. 
https://www.unido.org/news/development-dialogue-digital-transformation-and-artificial-
intelligence-1 

United Nations Institute for Training and Research (UNITAR). (2024). The global E-waste 
monitor 2024. https://ewastemonitor.info/the-global-e-waste-monitor-2024/ 

Varoquaux, G., Luccioni, A. S., & Whittaker, M. (2024). Hype, sustainability, and the price of the 
bigger-is-better paradigm in AI. https://doi.org/10.48550/arXiv.2409.14160 

World Economic Forum. (2024). Generative AI governance: Shaping a collective global future. 
https://www3.weforum.org/docs/WEF_Generative_AI_Governance_2024.pdf 

 

About the Policy Network on Artificial Intelligence 

The Policy Network on Artificial Intelligence (PNAI) addresses policy matters related to 
artificial intelligence and data governance. It is a global multistakeholder effort hosted by the 
United Nations’ Internet Governance Forum, providing a platform for stakeholders and 
changemakers in the AI field to contribute their expertise, insights, and recommendations. 
PNAI’s primary goal is to foster dialogue and contribute to the global AI policy discourse. 
Participation in and contribution are open to everyone.  

Disclaimer 

The views and opinions expressed herein do not necessarily reflect those of the United Nations 
Secretariat. The designations and terminology employed may not conform to United Nations 
practice and do not imply the expression of any opinion whatsoever on the part of the 
Organization. Some illustrations or graphics appearing in this publication may have been 
adapted from content published by third parties. This may have been done to illustrate and 
communicate the authors’ own interpretations of the key messages emerging from 
illustrations or graphics produced by third parties. In such cases, material in this publication 
does not imply the expression of any opinion whatsoever on the part of the United Nations 
concerning the source materials used as a basis for such graphics or illustrations. Mention of 
a commercial company or product in this document does not imply endorsement by the United 
Nations or the authors. The use of information from this document for publicity or advertising 
is not permitted. Trademark names and symbols are used in an editorial fashion with no 
intention of infringement of trademark or copyright laws. We regret any errors or omissions 
that may have been unwittingly made. This publication may be used in non-commercial 
purposes, provided acknowledgement of the source is made. The Internet Governance Forum 
Secretariat would appreciate receiving a copy of any publication that uses this publication as 
a source. © Tables and Illustrations as specified. 
 


